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What is This Project?


• Thermal management of power electronics components

(e.g. IGBTs)

• Exploring liquid jet impingement cooling 
– Different impingement configurations 

– Single-phase and boiling jets 

– Empirical correlations 

– CFD simulations 

– Experiments on prototype structure 

– Heat transfer enhancements 

– Experimental demonstration on an inverter 
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Technical Approach


•	 Empirical correlations for both single-phase and 
boiling jets 

•	 CFD simulations of single-phase and boiling jets


•	 Experimental validation of CFD simulations with 
existing experimental data 

•	 IGBT package simulations for both single-phase jets 
(with water and glycol-water mixture) and boiling jets 
(with water) 
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Goal


•	 Establish a liquid cooling solution which dissipates up 
to 200 W/cm2 from the silicon die in the IGBT 
package 

•	 Preferably use glycol-water mixture at 105 C inlet 
temperature in the single-phase regime 

•	 Maintain the maximum temperature in the silicon die 
below 125 C 
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Approach and accomplishments for FY05


•	 User defined function (UDF) for nucleate boiling has 
been implemented and customized in the CFD code 
FLUENT for jet impingement applications 

•	 A spreadsheet-based modeling tool, based on 
empirical correlations, for both single-phase and 
boiling jets has also been developed 

•	 Numerical simulations also performed to study jet 
impingement cooling of IGBT package (Semikron 
inverter) 
–	 Baseline conditions demonstrated under which the program 

goals can be met with single-phase glycol-water jets 
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Free-surface jet 
(Womac et al., 
1993) 
configuration 

Submerged jet 
(Womac et al., 
1993) 
configuration 

Different et configurations 
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Confined submerged jet (Garimella and Rice, 
1995) configuration 

Different et configurations 
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Comparison between CFD results and 
experimental results 
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Half bridge with IGBTs 



 

 

Velocity 
V = 8 m/s 

 

 
Temperature contours 
90 W/cm2; T 0C; T 0C 
(Glycol-Water mixture) 11 

Low thermal resistance IGBT structure 
simulation 

in max = 125 coolant = 105



Heat transfer results for the different cases


GLYCOL-WATER WATER 
MIXTURE 

90 W/cm2 2 0 0 
W/cm2 

90 W/cm2 200 W/cm2 

Jet velocity, 
m/s 

8 20 8 20 

TINLET, °C 105 105 105 105 

TMAX, °C 125 135 119 127 

h C O P P E R , 
W/m2K 

39,000 75,700 74,200 157,300 

h A L U M I N U M , 
W/m2K 

19,800 40,500 37,100 
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Summary for single phase jets


•	 CFD predictions compare well with available 
experimental data in the literature for submerged jets 

•	 Glycol-water jet impingement simulation of the low 
thermal resistance IGBT structure reveals 
- q = 90 W/cm2; v = 8 m/s; T = 1050C; Tmax = 1250Cinlet 

- q = 200 W/cm2; v = 20 m/s ; T = 1050C; Tmax = 1350Cinlet 

•	 With surface enhancements and pulsating/self-
oscillating jets, there is a potential for removing 150 
to 200 W/cm2 with velocities less than 10 m/s 
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Numerical (CFD) simulations of nucleate

boiling in turbulent impinging jets


•	 Based on the Eulerian multiphase model proposed by 
Podowski et al. (1997) 
–	 This involves numerically solving the mass, momentum and 

energy conservation equations for different phases 

–	 A number of closure relations for interfacial terms between 
liquid and vapor 

•	 User defined function (UDF) for nucleate boiling in 
impinging jets has been customized and implemented 
in FLUENT 
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d=1.6mm v = 2m/s, T = 97 C 

5 mm 
2 mm 
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outletPressure 
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Validation with experimental study of Katto 
and Kunihiro (1973) with submerged water 

ets 

inlet 



First time 
a CFD code is 
being validated 
with this 
experimental 
data 
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Comparison of boiling curve obtained 
from experiments and CFD 



50 W/cm2 100 W/cm2 

Water jet; d=1.6mm; v = 2m/s; T = 100 C 
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Animations of vapor formation 

inlet = 97 C; Tsat 
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Validation with experimental results of Zhou
and Ma (2004) for submerged R113 jets
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Comparison of boiling curve obtained 
from experiments and CFD 
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Water jet; T

Heat dissipation in the silicon die 
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Numerical simulations of IGBT package 
cooling with boiling ets 

Copper 

um num 

inlet =105 C; Tsat =108 C; v= 2 m/s 



45 W/cm2 90 W/cm2 

Water jet; T
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Animations of vapor volume fraction 

inlet =105 C; Tsat =108 C; v= 2 m/s 



d=1.6mm v = 2m/s, T = 97 C 

5 mm 
2 mm 

Axisymmetric domain 

q 

10 mm 
20 mm 

Pressure 
outletPressure 

outlet 

q = 100 W/cm2 

Twall
Twall
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Impact of boiling 

inlet 

avg = 113C (with boiling) 
avg = 135 C (without boiling) 



q = 45 W/cm2 

Twall
Twall

Al i

Water jet; T

q = 90 W/cm2 

Twall
Twall
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Impact of boiling 

avg = 121.5 C (with boiling) 
avg = 123.4 C (without boiling) 

Copper 

um num 

inlet =105 C; Tsat =108 C; v= 2 m/s 

avg = 139.3 C (with boiling) 
avg = 142.0 C (without boiling) 



Summary and conclusions for boiling jets


•	 UDF for nucleate boiling has been customized for jet 
impingement applications and implemented in 
FLUENT 
–	 Code has been validated against experimental data 

•	 The impact of boiling has been explored 

•	 Saturated flourinerts (FC72, 77, 84) and OS-10 yield 
low critical heat fluxes (CHF) (< 60 W/cm2 for 
velocities as high as 8 m/s). Water yields highest CHF 
values 
–	 An appropriate working fluid in the boiling regime for power 

electronics applications needs to be investigated 
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Project motivation for FY06


•	 Glycol-water mixture will be readily accepted as a 
working fluid in the single-phase regime 

•	 Very high velocities would be required to meet 
program requirements with single-phase jets 

•	 Enhancements in heat transfer need to be explored


•	 Self-oscillating/pulsating jets and surface 
enhancements have the potential to enhance the 
heat transfer coefficients considerably (~ 100 %) 
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Approach for FY06


•	 Explore single-phase glycol-water jets with 
enhancements in heat transfer 

•	 Visualization tests with self-oscillating nozzles obtained 
from a company 

•	 Experiments on a prototype structure (heat transfer)


•	 After data analysis and proof of enhancements, plan for 
tests in an actual inverter 

26 



j

27 

Animations of self-oscillating ets 



Timeline for FY06


FY06 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 
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Barriers/Challenges


•	 Issues related to erosion and package stresses may 
have to be addressed 

•	 The reliability of the jet impingement cooling system 
will have to be demonstrated 
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• Collaboration with a 
company on self-oscillating 
jets is anticipated in FY06 

• Fluent Inc. 
• Collaboration in 

numerical simulations 
of boiling jets 

• NREL 
• Numerical simulations 

and experiments 
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Interactions and Collaborations 

NREL 
Fluent Inc. 



Questions 


